Examlex

Solved

The Bigger the Stop Sign, the More Expensive It Is sqrt(cost) \operatorname{sqrt}(\cos t)

question 144

Essay

The bigger the stop sign, the more expensive it is. Here is a graph of the height of a sign in inches versus its cost in dollars.
 The bigger the stop sign, the more expensive it is. Here is a graph of the height of a sign in inches versus its cost in dollars.   To achieve linearity, the data was transformed using a square root function of cost. Here are the results and a residual plot. Dependent Variable:   \operatorname{sqrt}(\cos t)     R   (correlation coefficient)   =0.98946627     R-s q=0.97904349   s: 0.2141   \begin{array}{lrr}\text { Parameter } & \text { coeff } & \text { se } \\ \text { Intercept } & 1.1857 & 0.4346 \\ \text { height } & 0.1792 & 0.0151\end{array}       -Interpret R-sq in the context of this problem.
To achieve linearity, the data was transformed using a square root function of cost. Here are the results and a residual plot.
Dependent Variable: sqrt(cost) \operatorname{sqrt}(\cos t)
R R (correlation coefficient) =0.98946627 =0.98946627
Rsq=0.97904349 R-s q=0.97904349
s: 0.2141
 Parameter  coeff  se  Intercept 1.18570.4346 height 0.17920.0151 \begin{array}{lrr}\text { Parameter } & \text { coeff } & \text { se } \\ \text { Intercept } & 1.1857 & 0.4346 \\ \text { height } & 0.1792 & 0.0151\end{array}

 The bigger the stop sign, the more expensive it is. Here is a graph of the height of a sign in inches versus its cost in dollars.   To achieve linearity, the data was transformed using a square root function of cost. Here are the results and a residual plot. Dependent Variable:   \operatorname{sqrt}(\cos t)     R   (correlation coefficient)   =0.98946627     R-s q=0.97904349   s: 0.2141   \begin{array}{lrr}\text { Parameter } & \text { coeff } & \text { se } \\ \text { Intercept } & 1.1857 & 0.4346 \\ \text { height } & 0.1792 & 0.0151\end{array}       -Interpret R-sq in the context of this problem.

-Interpret R-sq in the context of this problem.


Definitions:

Testing Process

The series of steps or procedures involved in administering, scoring, and interpreting tests or assessments.

Reliability Improvement

Efforts or methods aimed at increasing the consistency and dependability of a process, instrument, or system.

Client's Stress

The level of psychological strain and pressure experienced by an individual seeking professional help or services.

Reliability Estimates

Statistical measures that indicate the consistency of a test's results over time or across different raters.

Related Questions