Examlex

Solved

Use This Information to Answer the Following Questions -Use the Sensitivity Report to Answer the Following Questions:
A

question 18

Essay

Use this information to answer the following questions.
An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.
 Use this information to answer the following questions. An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.     On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.   \begin{array}{ccccccc} \hline \text { Cell } & \text { Name } & \begin{array}{c} \text { Final } \\ \text { Value } \end{array} & \begin{array}{c} \text { Reduced } \\ \text { Cost } \end{array} & \begin{array}{c} \text { Objective } \\ \text { Coefficient } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Increase } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\ \hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\ \hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\ \hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\ \hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\ \hline \end{array}     \begin{array}{l} \text { Constraints }\\ \begin{array} { l l c c c c c }  \hline \text { Cell } & \text { Name } & \begin{array} { c }  \text { Final } \\ \text { Value } \end{array} & \begin{array} { c }  \text { Shadow } \\ \text { Price } \end{array} & \begin{array} { c }  \text { Constraint } \\ \text { R.H. Side } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Increase } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\ \hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\ \hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\ \hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\ \hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\ \hline \end{array} \end{array}  -Use the Sensitivity Report to answer the following questions: a.Suppose that the number of type 1 claims increases to 6 and the number of type 2 claims decreases to 3.What impact would this simultaneous change have on the current optimal objective function value? b.What is the impact on the current solution and the objective function value if secretary A takes 3 hours to process claim 1 and secretary B takes 5 hours to process claim 1?
On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease  SC$13  A1 50211E+30 SD$13  A2 0131E+301 SE$13  A3 0121E+301 SF$13  A4 0341E+303 SC$14  B1 0241E+302 SD$14  B2 0351E+303 SE$14  B3 0231E+302 SF$14  B4 30131E+30 SC$15  C1 0131E+301 SD$15  C2 40211E+30 SE$15  C3 20111E+30 SF$15  C4 0451E+304\begin{array}{ccccccc}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\\hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\\hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\\hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\\hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\\hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\\hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\\hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\\hline\end{array}

 Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease  $G$13  A constraint 100401E+3030 $G$14  B constraint 30401E+3037 $G$15  C constraint 100401E+3030 $C$16  Claim Type 1 525155 $D$16  Claim Type 2 424154 $E$16  Claim Type 3 212302 $F$16  Claim Type 4 313373\begin{array}{l}\text { Constraints }\\\begin{array} { l l c c c c c } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Shadow } \\\text { Price }\end{array} & \begin{array} { c } \text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\\hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\\hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\\hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\\hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\\hline\end{array}\end{array}
-Use the Sensitivity Report to answer the following questions:
a.Suppose that the number of type 1 claims increases to 6 and the number of type 2 claims decreases to 3.What impact would this simultaneous change have on the current optimal objective function value?
b.What is the impact on the current solution and the objective function value if secretary A takes 3 hours to process claim 1 and secretary B takes 5 hours to process claim 1?


Definitions:

Flexed

Bent or tensed, often referring to a muscle position.

Fibula

A long, thin bone located on the lateral side of the tibia in the lower leg, important for stabilizing the ankle and supporting muscles.

Ulna

A bone in the forearm that runs from the elbow to the smallest finger, and when in anatomical position, it is found on the medial side of the forearm.

Tibia

The shinbone or larger and stronger of the two bones in the lower leg, extending from the knee to the ankle.

Related Questions