Examlex

Solved

Use This Information to Answer the Following Questions -Use the Sensitivity Report to Answer the Following Questions:
A

question 1

Essay

Use this information to answer the following questions.
An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.
 Use this information to answer the following questions. An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.     On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.   \begin{array}{ccccccc} \hline \text { Cell } & \text { Name } & \begin{array}{c} \text { Final } \\ \text { Value } \end{array} & \begin{array}{c} \text { Reduced } \\ \text { Cost } \end{array} & \begin{array}{c} \text { Objective } \\ \text { Coefficient } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Increase } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\ \hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\ \hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\ \hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\ \hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\ \hline \end{array}     \begin{array}{l} \text { Constraints }\\ \begin{array} { l l c c c c c }  \hline \text { Cell } & \text { Name } & \begin{array} { c }  \text { Final } \\ \text { Value } \end{array} & \begin{array} { c }  \text { Shadow } \\ \text { Price } \end{array} & \begin{array} { c }  \text { Constraint } \\ \text { R.H. Side } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Increase } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\ \hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\ \hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\ \hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\ \hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\ \hline \end{array} \end{array}  -Use the Sensitivity Report to answer the following questions: a.Which constraints are binding? b.Suppose that secretary A has a total of 45 weekly hours.What impact would this have on the current optimal solution? c.What is the total number of unused weekly hours for secretary B? d.Suppose that the number of type 4 claims increases to 4? What impact would this have on the current optimal solution?
On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease  SC$13  A1 50211E+30 SD$13  A2 0131E+301 SE$13  A3 0121E+301 SF$13  A4 0341E+303 SC$14  B1 0241E+302 SD$14  B2 0351E+303 SE$14  B3 0231E+302 SF$14  B4 30131E+30 SC$15  C1 0131E+301 SD$15  C2 40211E+30 SE$15  C3 20111E+30 SF$15  C4 0451E+304\begin{array}{ccccccc}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\\hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\\hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\\hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\\hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\\hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\\hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\\hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\\hline\end{array}

 Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease  $G$13  A constraint 100401E+3030 $G$14  B constraint 30401E+3037 $G$15  C constraint 100401E+3030 $C$16  Claim Type 1 525155 $D$16  Claim Type 2 424154 $E$16  Claim Type 3 212302 $F$16  Claim Type 4 313373\begin{array}{l}\text { Constraints }\\\begin{array} { l l c c c c c } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Shadow } \\\text { Price }\end{array} & \begin{array} { c } \text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\\hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\\hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\\hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\\hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\\hline\end{array}\end{array}
-Use the Sensitivity Report to answer the following questions:
a.Which constraints are binding?
b.Suppose that secretary A has a total of 45 weekly hours.What impact would this have on the current optimal solution?
c.What is the total number of unused weekly hours for secretary B?
d.Suppose that the number of type 4 claims increases to 4? What impact would this have on the current optimal solution?

Determine the adjustments required for intra-entity transactions involving land sales and purchases.
Evaluate the effects of equipment transfers on consolidated financial statements.
Assess the gain or loss on intra-entity asset transfers and its recognition.
Understand the computation of noncontrolling interest's share of net income in consolidation.

Definitions:

Antitrust Laws

Regulations designed to promote competition and prevent monopolies by prohibiting business practices that restrict or control market competition.

Monopoly Power

The ability of a single seller or firm to influence and control the market price and total supply of a product or service, to the exclusion of competing firms.

Antitrust Regulators

Government authorities or agencies responsible for enforcing laws that prevent anticompetitive practices, monopolies, or other activities that restrict free competition.

Online Pricing Algorithms

Computer-based systems and software used by businesses to dynamically set or adjust prices of products and services online based on market demand, competition, and other factors.

Related Questions